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ABSTRACT 

A clouds-interacting-with-clouds, clouds-in-cells method (CIC) is presented for 
many-body nonlinear plasma problems. Density and force are obtained by assuming 
that the particles have finite size, are tenuous, and may pass through one another; 
the particles are thus called clouds. They obey a Coulomb force (-l/r or l/r*) when 
separated and a linear force (m-r) when overlapping, allowing simple harmonic oscilla- 
tions at small separation. CIC is contrasted with the zero-size particle and nearest- 
grid-point approach, ZSP-NGP. CIC appears to have substantially less unwanted 
noise than ZSP-NGP, and should be more useful in simulating dense plasmas. Initial runs 
have been encouraging. The methods may find use in other many-body simulations, 
such as with stars, or with particles in phase space. 

INTRODUCTION 

A clouds-interacting-with-clouds, clouds-in-cells (CIC) method is being used 
with some advantage over a zero-size-particle approach, especially with regard 
to reducing errors in the calculation of density and force. A major application is 
to many-body, nonlinear effects in fusion plasmas, and initial results with a 
two-dimensional code, SQRPLA, have been encouraging [ 11. 

1. PROBLEM STATEMENT 

The problem is to obtain the motion of ions and electrons in their own and 
applied fields. The electrostatic potential 4 is obtained from the electric charge 
density p by solving Poisson’s equation, 

1 This work was performed under the auspices of the US. Atomic Energy Commission. 
4 Permanent address: Electrical Engineering and Computer Sciences Department, University 

of California, Berkeley, California. This author was supported in part by A.E.C. Contract 
AT-(11-1)-34Proj. 128). 
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using a 48 x 48 grid, with C$ obtained at the grid points. We use a 9-point difference 
equation for Poisson’s equation (suggested by M. Greenberg) as given in 
Appendix A. The motion of the individual charged particles is obtained by 
integrating the Newton-Lorentz equation, 

m;=q(E+vxB). 

The electric field E is -VC$. The magnetic field B is the applied field, given 
analytically. This integration uses the orbit fitting scheme given by Hackney [2]. 

The special problem addressed here is how to convert charge positions into 
charge density, and then how to obtain a consistent force on the particles. 

2. ZERO-SIZE-PARTICLE DENSITY AND FORCE 

In the zero-size-particle and nearest-grid-point method (ZSP-NGP), charge 
density is obtained by putting the charge and mass of a particle at the nearest 
grid point; the force is evaluated as if the particle were at the grid point. These 

0 123 45 67Ax 

POSITION OF SECOND CHARGE 

FIG. 1. Zero-size-particle, nearest-grid-point force between two positive particles. Force is 
zero in region -Ax/2 < x < AX/~. Adapted from Fig. 10 of Hackney [2]. 
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choices produce zero self-force, as desired. The resultant force law (in two 
dimensions) between two like particles approximates a l/r Coulomb law, in 
staircase fashion, down to separation of one cell where the force vanishes; the 
ZSP-NGP force law is shown in Fig. 1, from Hackney [2]. The stepped law is 
inaccurate and the zero force region wipes out plasma oscillations for separations 
between ions and electrons of less than one cell even for long wavelengths. 
Hackney [5] proposes that these difficulties can be reduced by using a very large 
number of particles in a Debye circle, No = n.rrXD2 > 1; n is the number density 
of ions or electrons and h, is the Debye length, athermai/ws, where OJ~ is the 
plasma frequency (simple harmonic oscillation frequency for small perturbations 
from equilibrium). However, with limited computer memories and times, the 
number cannot be increased indefinitely, limiting ZSP-NGP to low plasma 
densities. 

3. CIC DENSITY 

In the CIC method the particle coordinates (x, y) are taken to be at the center- 
of-mass-and-charge of charged clouds of finite extent. The clouds are tenuous 
and may pass through one another. The approach was first suggested to us by 
J. A. Byers; a similar interpretation was mentioned by Hackney [2]. The charge 
density to be assigned to points in a spatial grid is obtained by sharing the charges 
at several points. For example, using a cloud the same size as a grid cell, dx by dy, 
as shown in Fig. 2, the charge in the area shaded (z) is assigned to grid point (i,j); 
that shaded (I I I\), to (i + 1,j); that shaded A\, to (i + j, j + 1); that shaded (////) 
to (i,j + 1). For a large number of clouds, the charge density at (i,j) is obtained 
by summing over the clouds as 

PG, 3 = c %Pe(X, Y> 
clouds 

FIG. 2. Cloud located in a grid, with shading showing assignment of density to grid points 
for CIC method. 
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where p,(x, v) is the density of the cloud at x, y and aij is the area of the cloud 
appearing in the cell centered at i, j divided by the area of the cell; see Appendix B. 

The cloud size need not be that of a cell. As the cloud size is increased from 
zero, the force law begins to be smoothed out and the zero force region shrinks; 
the staircasing and zero-force region are obsent for cloud size equal to cell size. 
The density appearing at i, j for a cloud moving along x is shown in Fig. 3 for 
square clouds of side H = 0 through H = 2Ax. As the cloud size is increased 
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FIG. 3. Sketch of charge density assigned to (i, j) as particle moves past this grid point. 

The size of the cloud in the x direction (cloud side) varies from 0 to 2Ax. 

beyond cell size, resolution decreases because the cloud density is held constant 
over a distance larger than the shortest resolvable wavelength. Of course, the 
density could vary within a cloud which would be resolvable only if the cloud is 
larger than a cell or, as H. Berk suggests, the cloud size might vary during the 
problem. The method centers around reducing the potential energy of the particles 
as we go from a laboratory system of, say, 1015 particles to a computer experiment 
with, say, lo4 particles; the greatest improvement comes with the greatest 
overlapping of clouds. 

The potential energy is presently calculated by summing p#. The p’s are the 
charge densities assigned to the grid points and the d’s are the potentials at the 
grid points. With this method, as an isolated cloud moves through the mesh, 
the potential energy is not constant, but largest for the cloud at a grid point and 
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least in between. With many charges, these variations are small, but still 
undesirable. 

4. CIC FORCE 

The CIC method uses the electric force on a cloud as that averaged over the 
cloud, as given by: 

The aij are the fractional areas as before; the E, are the fields at the grid points 
where the parts of the cloud are assigned. For example, for that part of the cloud 
placed at the point i + 1, j + 1, the x-field is given by 

-(b(i + 2,j + 1) - +(i, j + 1)Wx. 

It is obvious, that in an infinite net (walls well removed) the partial cloud produces 
no force on itself; A. B. Langdon has shown us that partial clouds, taken pairwise, 
produce equal and opposite forces, explosive in nature, producing no net self 
(translational) force since the cloud has an implicit binding force. Thus, the 
CIC choices of charge and force sharing also produce no self force. The CIC force 
law is sketched in Fig. 4. 

One peculiarity of the square clouds in the square net is that the force between 
two charged particles is not wholly a central force. Because of the four-pole 
nature of the cloud there is a small azimuthal force which varies periodically 

1 FORCE ON 

POSITION OF NEGATIVE CHARGE 

POSITIVE CHARGE 1 

FIG. 4. Force between a lixed positive charged cloud at a grid point and a negative cloud 
with the same y coordinate. The force approximates by straight line sections the Coulomb l/r 
force down to small separation where the law becomes linear; the clouds have simple harmonic 
plasma oscillation for small separation. For other cloud locations in the grid, the details differ 
slightly. 



MANY-BODY PLASMA SIMULATION 499 

aximuthally (as does the central force). This causes two overlapping clouds which 
are oscillating in simple harmonic (w,) motion to have an added azimuthal 
precession, first seen by D. Wong in our 3D program, CUBic PLAsma. C. Leith 
points out that this will tend to produce some angular squeezing, in our model, 
about a grid rotated n/4 from the x, y grid. Remedies are to use larger clouds 
(more poles, more rapid decay of multipolar terms) or, more radically, a “rounder” 
grid (e.g., hexagonal); use of circular clouds with the square grid does not appear 
too promising, as the grid effect remains. 

CIC is essentially a sharing rule for finding density and force, and proceeds 
just as in ZSP-NGP once the sharing is found. 

5. DENSITY CONTOWS 

The step from ZSP-NGP to CIC goes in the direction of particle to fluid 
mechanics. The ZSP-NGP density assignment is that the particle is either in or 
out of a given region. A way of illustrating this is by a contour plot of density 
as a particle with coordinates x, y moves in the region i & 1, j f 1, shown in 
Fig. 5. If the ZSP-NGP particle is within half a cell from the point i, j then the 
density is 1, otherwise, 0. In contrast, the density contours for CIC, Fig. 6, show 
a smooth transition from 0 to 1 over the whole region. For both models, in the 
region shown (i & 1, j f 1) the average density at point (i,j) is l/4, assuming 

FIG. 5. ZSP-NGP density at (i,]) for a particle at x, y; (i - 1) Ax < x < (i + 1) Ax, 
(i-l)Ay<y<o’+l)A~. 
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that the particle has uniform probability of being in this region. For CIC, the 
figure of l/4 can also be interpreted as meaning that a particle is equally shared 
with four points, on the average. 

FIG. 6. CIC density contours at (i,j) for a cloud at x, y; (i - 1) An < x < (i + 1) Ax, 
(j - 1) Ay < y < (j + 1) Ay. Cloud = cell size. 

6. SPATIAL SPECTRA 

Let us look at the spectra of charge density to see what errors are produced 
in the electric field because of the sampling in space. 

As a charge moves from cell i to cell i + 1, the densities assigned in ZSP-NGP 
to the grid points in the center of these cells varies as shown in Fig. 7a; as the 
particle position x passes halfway between i and i + 1, the density at i jumps 
to zero and the density at i + 1, to full value. Hence, point i senses a thick particle 
which is fix on a side. For a rough measure of the apparent wavelengths produced, 
or spatial spectrum, we take the Fourier transform of this apparent density, 
which is simply sin(kdx/2)/kdx/2), as sketched in Fig. 7b. Note that the grid 
does not respond correctly to information for kdx > TT; such information is 
falsely translated to longer wavelengths (aliased). 

In CIC, the corresponding behavior is shown in Fig. 8, the Fourier transform 
being the square of that above. By spreading out the charge, the spectrum is 
narrowed so that the amount of information that can be aliased is greatly reduced. 
One may choose to use larger clouds in order to reduce the spatial spectrum; 
or, if in the process of analysis the Fourier spectrum of the density is available, 
the spectrum can simply be narrowed to make small clouds appear larger (suggested 
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FIG. 7. ZSP-NGP density spatial assignment and Fourier spatial spectrum. 

by A. B. Langdon). If we take the information aliased to be related to the energy, 
then we should look at the square of the spectrum; in Fig. 8b, the solid curve 
is pi2(k) for ZSP-NGP and the dashed curve is pi2(k) for CIC. If we let the inform- 
ation aliased be proportional to the area under each curve for kdx > TT, then 
ZSP-NGP has an area almost an order of magnitude greater than CIC in this 
region. 
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FIG. 8. CIC density spatial assignment and spatial spectrum. 

m/3/4-4 



502 BIRDSALL AND FUSS 

7. TIMING ERRORS 

The errors in time may be thought to occur because the particle arrives and 
leaves early or late at a given cell position because of the discrete sampling in time. 
These errors are aggravated by the size of the particle (as contrasted with a smooth 
fluid). This effect is shown in Fig. 9 for ZSP-NGP. With an average velocity V, 

-T 2 0 I 
2 T 

ERROR 
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FIG. 9. ZSP-NGP density assignment in time with error term. 

the average time used in crossing a cell of side h is called T(CT = h), the transit 
time. As time advances in steps dt, a charge may depart late by & from one cell, 
hence arriving late by the same amount in the next cell, 6t < dt. If there are 
many particles in a cell on the average, there will be about as many arriving late 
as there are leaving late so that these errors will tend to cancel and produce the 
correct value of total charge in a given cell. The corresponding error in the vector 
direction of E, an error which occurs in two and three dimensions, may not be 
compensated this way. Unfortunately, we may not always have many particles 
per cell; indeed, we are more likely to average less than ten, with incomplete 
compensation between entering and leaving particles. For purposes of estimating 
the size of the error, we will use only one particle. 

The early-late arrival depends on the integration scheme for the equation of 
motion. We use the method as given by Hackney [2], with time steps shown in 
Fig. 10. The charge positions give the charge densities and the electric field; 
from E, the velocity v is advanced, and from the new value of v, the particles are 
advanced, each of the two steps being time-centered. Thus, given the position, 
the charge density is assumed constant for dt about time t. 
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FIG. 10. Equation of motion integration steps. 

For ZSP-NGP, the magnitude of charge will be too small by q for St and then 
T later, too large by q for 6t. The range of St is 0 < 6t < At and the average 
value would appear to be St z At/2. One viewpoint is to say that the measured 
value of pi(t) is the sum of the “true” value (At + 0) plus an error term. For 
ZSP-NGP, the magnitude of the error term is q and its frequency spectrum will 
be quite broad, extending well beyond the time resolution available. This extension 
is a measure of information lost or noise added to the computation. 

For CIC, a similar diagram can be made (Fig. 11). The peak error is less and 
the frequency spectrum of the error is narrower, as the error is nearly periodic 
with period At; hence there is less lost information or noise. One other point 
is that the peak value of the charge for CIC (b) will in general be less than that 

Pi(t) 
TRUE, /MEASURED 

-T T 0 7 T 

FIG. 11. CIC density assignment in time with error term. 
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for ZSP-NGP (a), (the whole charge) because the cloud on the average is shared 
with four grid points. Hence, using 

bA t/2 
es----- T and b g a/4 

we estimate 

which is a decrease in the direct error of at least an order of magnitude, possibly 
much more in the mean square error. 

8. SHOT NOISE; FLUCTUATIONS 

A classical approach can be used to estimate a collision rate or diffusion due 
to computational discreteness in time and space. Let us again make rough estimates. 
For a gas of independent and non-interacting particles, the dispersion about the 
mean value of the number in some volume is: 

If we choose the volume in question to be the least volume discernible, roughly 
one cell, then ti will generally be on the order of 1 to 10 and the dispersion will be 
large indeed. H. Berk suggests that the volume in question should have sides 
on the order of (l/k) where k is the largest wavenumber of interest. 

A special volume for plasmas is that bounded by XD on a side. For smaller 
volumes there can be appreciable charge separation with correspondingly large 
electric fields; for larger volumes, the charge separation and E fields will be smaller. 
Hence, one might expect the dispersion to be about l/g for volumes up to fi = ND 
but to be much smaller than l/E (or l/ND) for larger volumes. 

If we take the dispersion to be the fluctuations in charge density due to 
discreteness and let these fluctuations produce a fictitious electric field, p, 
then we obtain an effective collision frequency which is proportional top N 8n2. 
This collision frequency would overestimate the effect of fluctuations because 
the particles interact dynamically in such a way as to smooth out fluctuations 
rather completely at low frequencies and at distances greater than X, . Thus, 
even for a laboratory plasma we might write something like 

6n2 
x =R-= f 

0 
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R2 is the dynamical fluctuation (or shot noise) reduction factor, generally expected 
to be less than unity and dependent on frequency, wavelength and the volume 
in question, i.e., R2 = R2(w, k, E/ND). From the physics of laboratory plasmas, 
one should be able to obtain the w, k dependence of R2; such answers may be 
quite complex and obtained after considerable effort, as exemplified by similar 
calculations of diode shot noise [4]. Answers for simulation noise may be expected 
to be somewhat more difficult to extract. Hackney ([2], [5]) has offered some 
values which may be applicable to ZSP-NGP but which may overestimate the 
noise in CIC. 

Some answers are available. A l/E dependence has been observed by Barnes 
and Dunn [3] for shot noise using a one-dimensional electron model, about h, in 
length, with zero-size particles; from their work we find that R2 g 3 x 1O-4 is 
implied, showing considerable interaction. The arguments given earlier imply 
that short wavelength, high frequency fluctuations should be reduced as H is 
increased from zero; the reduction in fluctuations, (E2(k)>, at large k has recently 
been shown in theory and experiment by Dawson, Hsi and Shanny [6] for Gaussian 
density slabs and by McKee [7] for uniform density slabs. The total fluctuation 
level is also reduced by the use of clouds, with appreciable reduction coming 
as the cloud is made larger than a Debye volume, i.e., H > A,. For such large 
clouds, the shielding length changes from hD to H, as originally suggested to us 
by J. M. Dawson, and shown explicitly recently by H. Okuda for a special cloud [7]. 

For cold plasmas, hD = 0, No = 0, the physical model has no randomness 
and, hence, no dispersion. In order to observe plasma oscillations, we gave the 
electron clouds a small velocity modulation at long wavelength and held the ion 
clouds fixed, in two dimensions, H = h. With the velocity amplitude about 
one sixth that needed for the first cloud crossing, we observed almost perfect 
exchange between potential and kinetic energy for several cycles; at smaller velocity, 
the exchange was imperfect by a few per cent. This defect is partially due to the 
deviation of the force on individual clouds from the correct force which is dependent 
on the way the clouds are placed in the grid; Langdon and Wong made this 
explanation more explicit in one-dimensional theory and experiments [7], with 
H = dx (large effect) and H = IOdx (vanishingly small grid effect, even out 
to kH = 24. 

9. EXPERIENCE WITH CODE 

Our experience with the CIC method in two-dimensional plasma problem?, 
with code SQuaRPLA has been very good [I]. In initial trial runs we found an 
appreciable decrease in fluctuations of potential energy as No was increased 
through unity. In subsequent runs, at low density (wD2/wc2 of ions 5 l), we found 
no direct evidence of large angle particle deflections and little or no evidence of 
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particle heating or cooling over hundreds of cyclotron and plasma periods. 
Perhaps the best measure of confidence has come in the constancy of total energy 
with no special energy conserving methods used. In spot checks during a plasma 
build-up run, energy was conserved to within 0.3 % for 8000 steps; in another 
run with 1600 clouds, hot ions and cold electrons in a nonuniform magnetic field, 
the energy remained constant to within fO.l % for 5000 steps. Typically, the time 
step was l/15 of an electron cyclotron period, l/40 of an electron plasma period 
and about l/10 of the grid transit time, the mass ratio was m,/m, = 16. Low 
density runs such as these provide little test in trying to distinguish among various 
methods. These runs were made on the Univac Larc essentially in Fortran II. 
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FIG. 12. Comparison runs with 500 particles, (a) for CIC and (b) for ZSP-NGP, in a uniform 
magnetic field. At t = 0, the electron and ion kinetic energies were equal, m&t, = 16, 7gs E 6.7, 
T=* s 26.9, .rce = 6.28, ~~~ = 100, ND g 3. Run goes to T s 100. The most prominent frequency 
appears to be the electron hybrid with calculated period 7~ = 4.6. The ZSP-NGP growth in 
electron kinetic energy causes the total energy growth-which should not occur physically. 
There is initial potential energy as the ions and electrons were not overlaid at t = 0. 
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In order to compare CIC with ZSP-NGP, computer runs were made on a 
medium density warm plasma with identical initial conditions. The plasma had 
(w&J,2 z 14, was cylindrical in shape bounded by zero potential walls, in a 
uniform magnetic field, with equal numbers of ions and electrons, mass ratio 
mj/m, = 16, with equal kinetic energies for electrons and ions; no particles were 
lost to the walls. The first pair of runs used 250 electrons with ND g 3; the second 
pair used 5000 electrons (with the charge per cloud decreased in order to keep 
the plasma frequency constant) with ND g 60. The results for the 500 charges 
are shown in Fig. 12 in the form of energy (total, kinetic, potential) and potential 
(on two probes in the plasma) versus time. Energy grows in both runs (about 
500 times steps) although more slowly for CIC. The fluctuations observed in 
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FIG. 13. Same as Fig. 12 but for 10,000 particles and somewhat shorter total time, No g 60. 
The charge per particle was reduced to maintain the same plasma frequency; the cyclotron 
frequencies were also the same. The ZSP-NGP spurious effects are much smaller, but total energy 
still increases. 
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ZSP-NGP do not appear in CIC and are considered spurious. Results for 
10,000 charges are shown in Fig. 13. ZSP-NGP energy increases more slowly 
(about the same as CIC for 20 times fewer particles). These runs were made on a 
CDC 6600 using Fortran 400. One CIC time step was about twice as long as 
that for ZSP-NGP. As most of a step was used in moving the particles, this 
timing would indicate that ZSP-NGP could use about twice as many particles 
in the same time. R. Hackney (by letter to us) has noted the same difference in 
times, also using Fortran, on a gravitational problem (where, incidentally, the 
equivalent NI, is the total number of particles). As yet, we have little quantitative 
data on fluctuations relative to theoretical estimates. 

10. OTHER APPLICATIONS 

Many-body simulation of l/r, l/r2 forces with stars uses essentially the same 
equations given here with a sign change in Poisson’s equation. Hence, star 
calculations of density and force may also use the CIC approach to similar 
advantage, Each cloud becomes a tenuous collection of stars. 

The Vlasov equation using a distribution function, f(r, v, t) = N/d3x d3u, 
could also be solved in a gridded system (in r, v) with clouds of N particles (fixed 
number) moving about phase space. Use of sharing, CIC, should also help to 
reduce noise due to computational discreteness. 

11. CONCLUSIONS 

Contrasts between zero-size-particle, nearest-grid-point and clouds-in-clouds, 
clouds-in-cells methods of obtaining density and force have been offered. 
Arguments have been put forth to show that CIC should have substantially less 
noise or spurious effects than ZSP-NGP, resulting in lower noise for the same No 
if care is used in choosing cloud side H relative to grid side h and Xr,. The transition 
from ZSP-NGP to CIC coding requires the addition of simple sharing calculations 
for density and force, adding some time to each step. However, in working with 
denser and denser plasmas, meaning plasma diameters of more and more XD , 
will put demands on using the least tolerable No, to keep the number of particles 
within computer capacity. Thus CIC should aid in simulating higher density 
plasmas. 

R. L. Morse (Los Alamos Scientific Laboratory) has pointed out that hydro- 
dynamic calculations in their laboratory use their well-known particle-in-cell 
method (PIC) with “area weighting,” analogous to our charge and force sharing, 
to achieve smoothing. If we claim anything at all, it is that we are among the 
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early users and strong advocates of CIC for simulation of charged particles and 
plasmas. 

We are aware that what is presented here is only a beginning, some initial 
persuasion and evidence that CIC may be useful. It will be necessary to obtain 
more rigorous theoretical physical description for clouds interacting with clouds, 
with and without grids, such as Boltzmann, Vlasov-type equations, collision cross 
sections and frequencies, dispersion relations and so on. Such descriptions are 
being developed ([6], [7]). 
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APPENDIX A. POISSON SOLVER 

The difference equation used for Poisson’s equation is the stencil given by 
Collatz [8], as follows (h = dx = dy): 

8h2V2~,,o + h2V2~,,0 + h2V2z+,r + h2V2x,,, + h2V2~,,-, 

+ 4OUO,O - 8(u,,, + ~0.1 + - + *> - 2@,,, + u,,-1 + - + -1 

We replaced the V2u by the (--p/co) at that grid point. Comparing the error term 
with the Laplacian terms, for harmonic densities and potentials, shows that 
this 9-point form produces 1 to 2 orders of magnitude less error at large wavelengths 
relative to the widely used 5point form. 

The method of solution, for zero potential walls bounding a 48 x 48 grid, 
was to Fourier analyse (p/co) in x, assume that this could also be done for 4, 
following Hackney (and Buneman [2]), but then to solve the 47 difference equations 
for each of the 47 harmonics by Gauss elimination; the last step is to Fourier 
synthesize in x to produce 4(x, JJ). In the Fourier sine analysis-synthesis, the 
amplitudes of like-valued sines were gathered together to reduce multiplications; 
the running times appear comparable with those of more formal fast Fourier 
transform methods. 



510 BIRDSALL AND FUSS 

For a doubly periodic system with a 32 x 32 grid, we Fourier analyse the 
density in both x and y and obtain the Fourier amplitudes of potential directly 
and then synthesize. We use a FFT routine. 

In three dimensions, for zero potential walls bounding a 36 x 36 x 36 grid 
(z+ 50,000 points), using a nineteen point difference equation [8], the density is 
Fourier sine analysed in x and y, then the difference equations are solved for 
the harmonics of the potential by Gauss elimination, followed by synthesis. 
Starting with charges on the mesh points, the time for solving for the potential is 
about 6 seconds, using a Fortran program on the CDC 6600. No attempt has 
been made to reduce this time, yet it is comparable to that of Hackney’s two 
dimensional 256 x 256 (E 65,000 points) highly refined machine code Poisson 
solver [9]. 

APPENDIX B. CHARGE SHARING 

The charge sharing expression in Section 3 is written out here for the rectangular 
cloud shown in Fig. 2, H, = AX, H, = dy. The origin for X, y is taken as i, j; 
x and y must fall within the four grid points named on the figure, accomplished 
in the code by determining the lower left hand grid location (by truncation for 
AX = dy = 1). pc is the charge density of the cloud. 

~(6 j) = fc (Ax - X)(AY - Y> 
Ax Ay 

pe+ LA=Po UY - Y) 
Ax Ay 

PC + 4 j + 1) = fc 6 

Ai j + 1) = fc (Ax - x) Y Ax Ay 
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